
April 2003

Version 6.2

TotalView
Creating Type

Transformations

Copyright © 1998–1999, 2003 by Etnus Inc. All rights reserved.
Copyright © 1999–2003 by Etnus LLC. All rights reserved.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Etnus Inc. (Etnus).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.

Etnus has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in this manual
is subject to change without notice, and should not be construed as a commitment by Etnus. Etnus assumes no responsibility
for any errors that appear in this document.

TotalView and Etnus are registered trademarks of Etnus Inc.

All other brand names are the trademarks of their respective holders.

Creating Type Transformations iii

Contents

1 TTF Overview
Why Type Transformations ...1
Using Type Transformations ..2

Instantiating Transformations ..3
Quick Definitions of Callbacks and Properties4

Using Addressing Expressions ...6
Exploring Your Data ..8
Creating Addressing Expressions ...9

2 Creating Vector Transformations
Non-vector Transformations ...13
The Vector Transformation ...14

vector_validate ..14
vector_type ..18
vector_lower_bounds ...19
vector_extent ...19
vector_addressing ...21
Final Steps ...22

Convenience routines ...22
dump_type_transformation ...23
ttf_check_location ...23
ttf_check_symbol_compiler ...23
ttf_debug_puts ...23
ttf_extract_offset ...24
ttf_get_base_class_id ..24
ttf_get_base_class_location ..25
ttf_get_containing_image_id ..25
ttf_get_single_symbol_from_scope ...26
ttf_get_single_symbol_id_from_scope ..26
ttf_get_symbol_external_name ...27
ttf_is_symbol_of_kind ...27
ttf_read_store ..27
ttf_resolve_final_type_index ...27

Contents

iv Version 6.2

ttf_resolve_target_type ...28

3 TTF CLI Commands
scope.. 30
symbol .. 32
type .. 43
type_transformation .. 46

Creating Type Transformations 1

TTF Overview 1

The Type Transformation Facility (TTF) lets you define
the way TotalView displays aggregate data. Aggregate
data is simply a collection of data elements. These ele-
ments can even be other aggregated elements. In most
cases, you will be creating transformations that model
data that your program stores in an array-like or list-like
way. You can also transform arrays of structures.

This chapter describes the TTF. It presents information on
the existing transformations and an overview of how you
create your own.

While Etnus supports the transformation scripts that it
provides and supports the type transformation facility, we
do not offer support for problems you may encounter when
writing your own transformations. As you will see, writing
a transformation means grappling with the way your com-
piler stores information and the way in which TotalView
stores debugging information. Consequently, creating a
type transformation is often a laborious, trial and error,
iterative activity.

Why Type Transformations
Modern programming languages allow you to use abstractions
such as lists, maps, and vectors to model the data that your pro-
gram uses. For example, the STL (Standard Template Library)
allows you to create vectors of the data contained within a class.
These abstractions simplify the way in which you think of and
manipulate program’s data. While these abstractions simplify
the way in which you can manipulate this data, they greatly

Chapter 1: TTF Overview

2 Version 6.2

complicate debugging this data when problems occur. For
example, Figure 1 shows a vector transformation.

The upper left window shows untransformed information.
TotalView is treating this GNU C++ STL instantiation in the
same way as any other class. That is, it shows the complete
structure of the information, which means you are seeing the
data as your compiler stored it.

While you understand the logical model that is the reason for
using an STL vector, neither TotalView nor your compiler has
this information. This is where type transformations come in.
They give TotalView knowledge of how the data is structured
and how it can access data elements.

Using Type Transformations
When TotalView begins executing, it loads its built in transfor-
mations. To locate the directory in which these files are stored,
use the following CLI command:

dset TOTALVIEW_TCLLIB_PATH
Type transformations are always loaded. By
default, they are turned on. From the GUI, you
can control whether transformations are
turned on or off by going to the Options Page of
the File > Preferences Dialog Box and chang-
ing the View simplified STL containers (and
user-defined transformations) item. For exam-

FIGURE 1: A Vector
Transformation

Using Type Transformations

Creating Type Transformations 3

ple, the following turns on type transforma-
tions:
dset TV::ttf true

Instantiating
Transformations

TotalView’s built-in type transformations and the transforma-
tions that you will write are CLI Tcl callback procedures. While
they do other things, most callback routines tell TotalView
where in memory it will find information. These definitions are
called addressing expressions. Creating expressions and call-
back routines is discussed in Chapter 2, “Creating Vector Trans-
formations,” on page 13.

All callbacks need to be installed as part of a transformation.
This is a two-step process:

■ Use the TV::type_transformation command to obtain a handle
that TotalView will use to identify a transformation.

■ Use the TV::type_transformation command to associate call-
backs with this handle.

Here’s an example:

set ttf_id [TV::type_transformation create Array]

TV::type_transformation set $ttf_id \
name {^(class|struct) (std::)?vector *<.*>$} \
language C++ \
type_transformation_description “GNU Vector”\
validate_callback vector_validate \
type_callback vector_type \
lower_bounds_callback vector_lower_bounds \
upper_bounds_callback vector_extent \
addressing_callback vector_addressing

Note The STL transformations that Etnus supplies are automatically installed
when TotalView starts executing.

The first type_transformation command also tells TotalView
that you are creating an array-like transformation. The kinds of
transformations that you can create are:

■ Array: information is laid out sequentially in memory. For ex-
ample, an STL vector is an array-like organization of informa-
tion.

■ List: information is linked using pointers. For example, an
STL list uses this type.

■ Map: only used for STL maps.
■ Struct: information is a structure whose appearance the trans-

formation is altering.

These options are not case sensitive.

The second type_transformation command either provides gen-
eral information or names the callback procedures. The first
five elements (name, language, validate_callback,

Chapter 1: TTF Overview

4 Version 6.2

type_transformation_description, and type_callback) are used
with all transformations. Each kind of transformation such as an
array or a list has additional, unique callbacks. Here, for exam-
ple, is the general pattern for a List transformation:

set ttf_id [TV::type_transformation create List]

TV::type_transformation set $ttf_id \
name {^(class|struct) (std::)?List *<.*>$} \
language C++ \
type_transformation_description “GNU List”\
validate_callback list_validate \
type_callback list_type \
list_head_addressing_callback list_head_addressing \
list_first_element_addressing_callback \

 list_first_element_addressing \
list_element_count_addressing_callback \

 list_element_count_addressing \
list_element_next_addressing_callback \

 list_element_next_addressing \
list_element_prev_addressing_callback \

 list_element_prev_addressing \
list_element_data_addressing_callback \

 list_element_data_addressing

Struct transformations are much simpler, as they just use the
basic callbacks and declarations:

set ttf_id [TV::type_transformation create Struct]

TV::type_transformation set $ttf_id \
name {^(class|struct) (std::)?List *<.*>$} \
language C++ \
type_transformation_description “Application struct”\
validate_callback struct_validate \
type_callback struct_redefine

Note For information on a Map transformation, consult the TTF files
that came with this release.

While these examples show one call to type_transformation,
each callback or property could be done separately. The only
restriction is that everything must be defined before TotalView
reads your program’s symbol table. In addition, you can specify
callbacks and properties in any order.

Quick Definitions
of Callbacks and
Properties

This section provides a quick definitions of the properties and
callbacks instantiated with the type_transformation command.
You’ll find more information in Chapter 3, “TTF CLI Com-
mands,” on page 29.

Notice that the first four definitions describe properties. The
other definitions describe callbacks.

Used by All name Defines a regular expression that TotalView
uses to identify the data types it will transform.

Using Type Transformations

Creating Type Transformations 5

language Names the programming language. This is
always C++.

compiler Identifies which compiler to associate with this
transformation.

type_transformation_description
Contains a brief description of the transforma-
tion.

validate_callback
Names a procedure that checks to insure that
the right data type is being transformed. Typi-
cally, it also creates and stores information
used by other callback procedures.

type_callback For Array, List, and Map transformations,
identifies the actual data type. For a struct
transformation, this identifies the procedure
that does the transforming.

Unique to Array
Callbacks

lower_bounds_callback
Names a procedure that returns the address-
ing expression that TotalView uses to locate an
array’s lower bound.

upper_bounds_callback
Names a procedure that returns the address-
ing expression that TotalView uses when it
needs to establish an array’s upper bound. This
allows TotalView to determine the number of
elements in the array.

addressing_callback
Names a procedure that returns the address-
ing expression that TotalView uses to locate an
array’s first element.

Unique to List
Callbacks

list_head_addressing_callback
Names a procedure that returns the address-
ing expression that locates the head of a list.

list_first_element_addressing_callback
Names a procedure that returns the address-
ing expression that TotalView uses to move
from the head of the list to the first element in
the list. TotalView appends this expression to
the list_head_addressing_callback address
expression.

list_element_count_addressing_callback
Names a procedure that returns the address-
ing expression that TotalView uses to get the
member that contains the number of elements
in the list.

Chapter 1: TTF Overview

6 Version 6.2

list_element_next_addressing_callback
Names a procedure that returns the address-
ing expression that TotalView uses to go to the
next element in the list.

list_element_prev_addressing_callback
Names a procedure that returns the address-
ing expression that TotalView uses to go to the
previous element in the list. You do not need to
use this callback if you are transforming a sin-
gly-linked lists.

list_element_data_addressing_callback
Names a procedure that returns the address-
ing expression that TotalView uses to obtain
the data member within a list element.

Note As the Map type is so specialized, it will not be discussed in this book. If
you have need to create a map-like transformation, you will find that the
comments within the map source files to be helpful.

Using Addressing Expressions
Callback routines use and create addressing expressions that
allow TotalView to locate where information resides. When cre-
ating these expressions, there are two issues:

■ What is the structure of your information.
■ How to tell TotalView how it can obtain this information.

In many cases, TotalView shows you this information. For exam-
ple, here again is the structure for an STL vector:

This Variable Window shows the structure of the information
used by the GNU C++ compiler when it creates a vector. So, if
you’re going to be writing a transformation for a GNU C++ vec-
tor, your addressing expression would need to move through the
class hierarchy and from one element to another. That is, you

FIGURE 2: An STL Vector
(Revisited)

Using Addressing Expressions

Creating Type Transformations 7

will need to tell TotalView where the data elements reside in
relation to the beginning of the data structure. You’ll see how
this is done in the first half of Chapter 2, “Creating Vector
Transformations”.

Before creating these expressions, however, you’ll need to know
what TotalView is doing when it sees a data type that it will be
transforming. Here are the steps:

1 When symbols are being read, TotalView checks to see if the
symbol’s data type matches any of the regular expression for
registered type transformations.

2 If the symbol matches the regular expression entered into the
TV::type_transformation’s name specifier, TotalView invokes
that transformation’s validate_callback procedure. It also
sends the symbol’s symbol ID to this procedure.

3 Your procedure will return a true or false value indicating if
the symbol should be transformed. In other words, matching
the regular expression indicates that the data type can be
transformed. The validation routine indicates if it will be
transformed.
This routine performs two kinds of operations. The first
insures that the name of the type is really what you want
transformed. That is, while the data type fulfills the require-
ments of the regular expression, it could be similar to some-
thing you don’t want transformed.
In most cases, this validate procedure also creates addressing
expressions or store data that other callback routines will use.
While these other callbacks could create the addressing
expressions and information they need, the operations
involved in validating a data structure are similar. So doing
most of the work in the validation routines just simplifies the
creation of these other callback routines.
When you go over the vector example in Chapter 2, “Creating
Vector Transformations,” on page 13, you’ll probably think
that many of the checks are redundant. If what is being trans-
formed is a vector, then a lot of what you see isn’t needed.
However, these checks guard against the case of something
unexpected happening.

4 If the value returned by the callback routine is true, TotalView
invokes each of the registered procedures and caches the
results the callback returns. When it invokes a callback, it
sends the same symbol ID that was sent to the validate call-
back

5 Each of these procedures will return an addressing expres-
sion.

Chapter 1: TTF Overview

8 Version 6.2

Creating a type transformation, then, means that you are defin-
ing a set of address expressions that TotalView will use when it
needs to display information.

Exploring Your
Data

The process of creating an address expression is usually quite
involved as you must write CLI routines that step through a data
structure. Fortunately, TotalView comes with a number of con-
venience routines that will help. These routines are also
described in Chapter 2, “Creating Vector Transformations”. As
you will see, they greatly simplify the process of creating the
vector callback. Once you understand how these routines work,
you can use them when you write your own transformations.

Unlike the kind of programming you’re used to, writing these
callbacks is probably more trial-and-error and more iterative
than what you are used to. For example, the vector structure has
four parts. You would probably write a validate routine than
walks through the first part and returns a result. After you are
satisfied that is working, you’d write the second, and so on. As
you are writing the validate routines, you also need to be aware
of what data other callbacks require. However, on the first pass,
you probably wouldn’t want to think about them. For example,
the type_callback needs to know an element’s data type. Only
after successfully creating a validation routine would you add
code to the validation routine that stores the data type.

The vector example that you will read and study is misleading.
It shows something that is put together correctly and where
things are done in the right place. This wasn’t how it was writ-
ten. Instead, it was built a piece at a time in the way just
described.

The one piece of information you will need while you’re writing
these routines is the data type’s symbol ID. Unfortunately, the
best place to get it is from your validation routine. While this
appears to be a problem, you can get around it by creating a
dummy set of procedures. For example:

proc foo {id} {
return true

}

proc valid {id} {
puts “The symbol id is: $id\n”
return false

}

set ttf_id [TV::type_transformation create Array]

TV::type_transformation set $ttf_id \
name {^(class|struct) (std::)d?vector *<.*>$} \
language C++ \
validate_callback valid \

Using Addressing Expressions

Creating Type Transformations 9

type_transformation_description “testing”
lower_bounds_callback foo \
upper_bounds_callback foo \
addressing_callback foo \
type_callback foo

dset TV::ttf true

After you use the CLI’s source command to read this file,
TotalView prints a symbol ID in the window from which you
invoked TotalView. You can now use this ID as an argument to
the convenience routines.

In addition, the TTF files that come with TotalView have a great
many debugging statements that display information about what
is going on. You can enable and disable the display of this infor-
mation by setting the ::TV::TTF::_ttf_debug variable.

Creating
Addressing
Expressions

An addressing expression tells TotalView how to locate a vari-
able, a field in a structure, or an element in an array. This
expression is a string that contains one or more commands that
tell TotalView how it can locate information. For example:

{addc 4} {indirect}

This expression adds 4 to the address of the data structure, and
then return the value at the address pointed to by this address.

The addressing expressions that you will write are written in
TotalView’s internal addressing language. This language is writ-
ten as TotalView were a “stack machine”. After you create an
expression, TotalView appends them too those that it has
already used to reach the instance of the object with that type.

You must place all addressing expressions within braces {} and
you can structure this information as lists. When generating
addressing expressions, TotalView formats each opcode/oper-
and pair as one sublist containing the expression; for example:

d1.<> TV::type get 1|11 struct_fields
{bit_enum 1|12 {{bitfield_index {2>>0 unsigned}}} {}}
{wide_enum 1|13 {{bitfield_index {30>>2 unsigned}}} {}}

TotalView ignores the list structure when it reads an addressing
expression generated by user code.

Here is an explanation of the notation and abbreviations that are
used in the following tables:

ACC Accumulator or last element on the stack.
memory[n] The value read from the thread address space

at address n.
opd A simple numeric operation; that is, a single

decimal or hexadecimal (0x...) number.

Chapter 1: TTF Overview

10 Version 6.2

stack[n] The value of the nth element of the stack,
where stack[0] is the top of the stack.

TOS Top of Stack.

For opcodes without operands, all data comes from the stack.

Note There are many more operands described here than you will probably
ever use. For example, the vector example in the next chapter only uses
one operand from the second table and one from the third. None from
the fourth are used. Table 1 contains the most oftenly used operands.
However, the vector transformation only uses five of them.

TABLE 1: Operands
Without Opcodes

The following table lists opcodes with operands that also use
data from the stack.

TABLE 2: Opcodes with
Operands That Use
the TOS (Top of
Stack)

Opcode Meaning
abs ACC = abs (ACC)

and ACC = ACC & stack[depth-1]

div ACC = ACC / stack[depth-1]

drop Pop ACC and discard

dup Push ACC

indirect ACC = memory[ACC]

minus ACC = ACC - stack[depth-1]

mod ACC = ACC % stack[depth-1]

mul ACC = ACC * stack[depth-1]

neg ACC = - ACC

not ACC = ~ ACC

or ACC = ACC | stack[depth-1]

over Push the second entry on the stack

plus ACC = ACC + stack[depth-1]

rot Rotate the top three stack entries.

shl ACC = ACC << stack[depth-1]

shr ACC = ACC >> stack[depth-1] (unsigned shift)

shra ACC = ACC >> stack[depth-1] (signed shift)

swap Swap top two stack entries

value Treat ACC as number

xor ACC = ACC ^ stack[depth-1]

Opcode Meaning

addc opd ACC = ACC + opd

bitfield_index
bitopd

Load the address of the bit field whose store address
is in the TOS. This must be the last opcode in an
addressing expression.

Using Addressing Expressions

Creating Type Transformations 11

The bitfield_index opcode is more complicated and is encoded
as:

size>>shift [un]signed

where:

size Is the size in bits of the field.
shift Is the shift required to justify the field at the

low-significance end of the word.
This field is sign-extended if tagged as signed; otherwise, it
remains unsigned.

The following opcodes push the stack. Notice that they do not
use values on the stack.

TABLE 3: Operations
with Nonstack
Opcodes

The following special opcode is most often used in addressing
expressions that are appended to existing addressing expres-
sions:

TABLE 4: Special
Opcode

indirect_small opd Load opd bytes from memory[TOS] and zero
extend.

ldnl opd Load the value at address TOS+opd.

Opcode Meaning

Opcode Meaning

ldac opd Load the address of the constant opd

ldal opd Load the address of the local variable whose offset
from the frame pointer is opd

ldar opd Load the address of register opd

ldatls opd Load the address of the thread local storage object
at offset opd in the thread local space

ldc opd Load the constant opd

ldgtls opd Load the address of the general thread local storage
object whose key is opd

ldl opd Load the value of the local variable whose offset
from the frame pointer is opd

ldm opd Load the value stored in memory at address opd

ldr opd Load the contents of register opd

Opcode Meaning
remove_-
indirection

Removes an indirection operation from the tail of the
previous addressing expression; this is useful when
you for backing up from data to a dope vector.

Chapter 1: TTF Overview

12 Version 6.2

Creating Type Transformations 13

Creating Vector
Transformations 2

This chapter is a detailed examination of how to create an
STL vector transformation. It also discusses the TTF con-
venience routines that help create the vector transforma-
tion. After reading this chapter, you should understand
how you go about creating a transformation and the issues
involved when you create your own. As you will see, the
problems that exist when you create a transformation for
your own data types are unique and there are no easy solu-
tions.

Note from the Author: You are encouraged to read this
chapter using the PDF or HTML versions. This chapter
makes extensive use of links so that you can click on Tcl
procedure names and be taken to the procedure’s descrip-
tion. This should make it easier to understand this chap-
ter’s contents.

Non-vector Transformations
While the subject of this chapter is vector transformations, you
can also create list and struct transformations. (While you can
create your own map transformations, it is not recommended.)
The information in this chapter is a starting point. After you
understand this information, you can go to our lib subdirectory
and view how Etnus implemented these transformations for
your system. From within the CLI, you can obtain the location of
this library’s directory by typing:

dset TOTALVIEW_TCLLIB_PATH

Chapter 2: Creating Vector Transformations

14 Version 6.2

The Vector Transformation
This vector transformation has the following procedures:

■ “vector_validate”
■ “vector_type” on page 18
■ “vector_lower_bounds” on page 19
■ “vector_extent” on page 19
■ “vector_addressing” on page 21

vector_validate This procedure validates the layout of the internal representa-
tion of a GCC vector. This representation is:

vector class vector
 _Vector_base<int,allo.. class _Vector_base<..
 (Protected base class)
 _Vector_alloc_base.. class _Vector_alloc..
 (Public base class)
 _M_start int*
 _M_finish int*
 _M_end_of_storage int*

The validation routine checks the layout of data type that
matched the regular expression to make sure that it is process-
ing what it expected to be processing. Along the way, this rou-
tine obtains the soid (symbol object ID) of the target type index
for the type of Vector and also the soids of the _M_start and
_M_finish members. At a later time, another callback will use
these indices to compute the vector’s bounds.

The information needed at a later time is stored in a global
array. Here are the elements that this routine stores:

■ vector_type_id: The soid of the target type for the vector.
■ _Vector_base_id: The soid for the _Vector_base class
■ _Vector_alloc_base_id: The soid for the _Vector_alloc_base

class.
■ _Vector_alloc_base_M_start_id: The soid for the _M_start data

type.
■ _Vector_alloc_base_M_start_location: The “formula” to get to

the start of the vector. This computes, starting from the top of
the internal Vector structure the offset to _M_start.

■ _Vector_alloc_base_M_finish_id: The soid for the _M_finish
data type.

■ _Vector_alloc_base_M_finish_loc: The “formula” to get to the
end of the vector. This computes, starting from the top of

This validation routine is rather lengthy. However, all it does is
go from class to class and member to member within the vec-
tor’s structure. It also saves layout information while it does
this.

The Vector Transformation

Creating Type Transformations 15

proc vector_validate {symbol_id} {
The incoming symbol_id (soid) has already matched a regular
expression that indicates that this symbol looks like a GCC
vector. It has the form vector<int,allocator<int> >. So, do
some simple checking to make sure it really is a GCC vector.

vector # Make sure that this file was compiled by the GNU compiler.
if {![::TV::TTF::ttf_check_symbol_compiler \

$symbol_id "gnu_v2"] &&
![::TV::TTF::ttf_check_symbol_compiler \

$symbol_id "gnu_v3"] } {
return false

}
Make sure incoming symbol is of kind “aggregate_type”.

if {![::TV::TTF::ttf_is_symbol_of_kind \
$symbol_id “aggregate_type”]} {

return false
}

Make sure that the external name for this symbol is some-
thing like vector<...>. In other words, this revalidates
the regular expression matching that caused this
procedure to be activated. This isn’t strictly necessary.
#
For example, this could return:
class vector<int,allocator<int> >

if {![regexp {^(class|struct) (std::)?vector *<.*>$} \
[::TV::TTF::ttf_get_symbol_external_name \

$symbol_id] match]} {
return false

}

_Vector_base # The next set of operations begins analyzing the vector’s
structure. The first step is to locate information about the
_Vector_base class that vector extends. It begins by
obtaining the symbol ID for the vector’s base class. For
example the value returned might be something like
“1|26”.
#
You will need to spend some time understanding how
ttf_get_base_class_id works before you can write your own
transformations.
set _Vector_base_id [::TV::TTF::ttf_get_base_class_id \

$symbol_id]
if { $_Vector_base_id == ““ } {

return false
}

Store the ID of _Vector_base.
set analysis_info(“_Vector_base_id”) $_Vector_base_id

Get the location offset of the base class from this class so
we can use it when we need to access the member. For a
vector, ttf_get_base_class_location returns {}. In turn,
ttf_check_location returns “addc 0”. This will be the first,
addressing expression. In other words, _Vector_alloc_base
is not using any storage.

set _Vector_base_location ““
append _Vector_base_location \

“{“ \
[::TV::TTF::ttf_check_location

Chapter 2: Creating Vector Transformations

16 Version 6.2

[::TV::TTF::ttf_get_base_class_location \
$symbol_id]] \

“} “

_Vector_alloc_-
base

Move down to the _Vector_alloc_base class that
_Vector_base extends.

Notice that the code for analyzing this class is identical to that
which was used for the previous class. And, the results are the
same: it creates an “{addc 0}” addressing expression.

Get the symbol ID for the base class to _Vector_base.
set _Vector_alloc_base_id \

[::TV::TTF::ttf_get_base_class_id $_Vector_base_id]
if { $_Vector_alloc_base_id == ““ } {

return false
}

Store off the ID of the _Vector_base.
set analysis_info(“_Vector_alloc_base_id”) \

$_Vector_alloc_base_id

Get the location offset of the base class from this class.
This is used when accessing members.

set _Vector_alloc_base_location ““
append _Vector_alloc_base_location \

“{“ \
[::TV::TTF::ttf_check_location \

[::TV::TTF::ttf_get_base_class_location \
$_Vector_base_id]] \

“} “

_Vector_alloc_-
base member
and _M_start

analysis

Finally, the vector_validate procedure is ready to look at the
individual members of _Vector_alloc_base, which is where the
vector’s data is. There are three members: _M_start,
_M_finish, and _M_end_of_storage. Only the first two are
important as they let us compute the vector’s bounds.

Get the _M_start data member. The returned value will be a
symbol such as “1|30”.

When writing your own transformations, you’ll have to
understand how the TTF routines used here works.
set _Vector_alloc_base_M_start_id \

[::TV::TTF::ttf_get_single_symbol_id_from_scope \
$_Vector_alloc_base_id “member” “_M_start”]

if { $_Vector_alloc_base_M_start_id == ““ } {
return false

}

Get the location of _M_start. This address is relative to the
previous two addresses. In other words, what you need to do is
append the address of _M_start to the previous two addresses.
The result will be {addc 0}{addc 0}{something}. In this case,
we obtain yet another {addc 0}. This final addc is returned by
the ttf_check_location routine.

This is an instance of us being very, very cautious. Since you
know that this is 0, you could just ignore it.

The Vector Transformation

Creating Type Transformations 17

set _Vector_alloc_base_M_start_location ““
append _Vector_alloc_base_M_start_location \

$_Vector_base_location \
$_Vector_alloc_base_location \
“{“ \
[::TV::TTF::ttf_check_location \

[TV::symbol get \
$_Vector_alloc_base_M_start_id location]] \

“} “

Store off information about the _M_start member.
set analysis_info(“_Vector_alloc_base_M_start_id”) \

$_Vector_alloc_base_M_start_id
set analysis_info(“_Vector_alloc_base_M_start_location”) \

$_Vector_alloc_base_M_start_location

Determine the type of the vector by analyzing the type of
the _M_start member. This is actually a pointer to the
actual data type of the vector. This means that we will need
to resolve this to the actual type of the list. The returned
value looks something like: <2,0,409>.

set _Vector_alloc_base_M_start_type_index \
[TV::symbol get $_Vector_alloc_base_M_start_id \

type_index]

Get the containing image ID for the symbol.
set image_id [::TV::TTF::ttf_get_containing_image_id \

$symbol_id]

Get the symbol ID for _M_start.
set _Vector_alloc_base_M_start_type_id \

[TV::scope lookup $image_id in_scope \
$_Vector_alloc_base_M_start_type_index]

Make sure what TotalView returned is a “pointer_type”.
if {[TV::symbol get $_Vector_alloc_base_M_start_type_id \

kind] \
!= “pointer_type”} {

return false
}

Get the target type index for the _M_start symbol and
then get the ID for it. We’ll store this ID off for later use.

set target_type_index \
[TV::symbol get $_Vector_alloc_base_M_start_type_id \

target_type_index]
set target_type_id \
 [TV::scope lookup $image_id in_scope \

$target_type_index]

Make sure the target type is fully resolved.
set target_type_id \

[TV::type resolve_final $target_type_id]

Store off information about the target type of _M_start
member.

set analysis_info(“vector_type_id”) $target_type_id

Chapter 2: Creating Vector Transformations

18 Version 6.2

_M_finish # Get the _M_finish data member. This address is relative to the
previous two class addresses. It is not relative to the _M_start,
member. This address will be appended to the two addresses
for the classes, both of which were {addc 0}. The result is
{addc 0}{addc 0}{something}. In this case, this is {addc 4}.
This final addc is returned by the ttf_check_location routine.

Notice that the routines in this section are identical to those
used in the previous section. And, like for the _M_start
routine, the {addc 0} expressions are there because we’re
being careful. If you know that something will always be zero,
you need not include it.
set _Vector_alloc_base_M_finish_id \

[::TV::TTF::ttf_get_single_symbol_id_from_scope \
$_Vector_alloc_base_id “member” “_M_finish”]

if { $_Vector_alloc_base_M_finish_id == ““ } {
return false

}

Get the location of _M_finish.
set _Vector_alloc_base_M_finish_loc ““
append _Vector_alloc_base_M_finish_loc \

$_Vector_base_location \
$_Vector_alloc_base_location \
“{“ \
[::TV::TTF::ttf_check_location \

[TV::symbol get \
$_Vector_alloc_base_M_finish_id location]] \

“} “

Store off information about the _M_finish member.
set analysis_info(“_Vector_alloc_base_M_finish_id”) \

$_Vector_alloc_base_M_finish_id
set analysis_info(“_Vector_alloc_base_M_finish_loc”) \

$_Vector_alloc_base_M_finish_loc

Final steps # Save the extracted information from the types so it can be
accessed later. As there can be more than one variable
associated with a transformation, it will be associated with the
incoming symbol ID. As TotalView passes this ID to other
callbacks, you can retrieve this data by using this ID.
variable _vector_type_info
set _vector_type_info($symbol_id) \

[array get analysis_info]

Made it through all the checks. The GCC Vector is what we
expected!

return true
}

vector_type Return the type ID for the target type. This is the “type” of the
vector such as int. All this routine is doing is returning the value
created by the vector_valid routine.

proc vector_type {symbol_id} {
variable _vector_type_info

array set analysis_info $_vector_type_info($symbol_id)

return $analysis_info(“vector_type_id”)
}

The Vector Transformation

Creating Type Transformations 19

vector_lower_-
bounds

Create the addressing expression that determines the offset for
the lower bounds for the given type ID. For C/C++, the vector’s
lower bound is always 0, so all that needs to be done is dup the
accumulator and subtract it from itself to yield 0.

Because TotalView will send a symbol_id to the routine, it is
used as the procedure’s parameter even though it isn’t used.

proc vector_lower_bounds {symbol_id} {
return [list dup minus value]

}

vector_extent Create the expression that determines the offset for the upper
bounds for the given type ID. This is the most difficult of the
routines. This code presentation is immediately followed by a
table that describes just the addressing expression being cre-
ated and what it does.

proc vector_extent {symbol_id} {
variable _vector_type_info

array set analysis_info $_vector_type_info($symbol_id)
set lower_bound_location \

$analysis_info(“_Vector_alloc_base_M_start_location”)
set upper_bound_location \

$analysis_info(“_Vector_alloc_base_M_finish_loc”)
set target_type_id $analysis_info(“vector_type_id”)

For GCC, the offset is the difference between the
addresses of _M_start and _M_finish divided by the size of
the vector’s type. That is:

(_M_finish - _M_start)/size

Dup the TOS. This preserves the original ACC and the one
we will operate upon. This will be before the upper bound.

set location {}
lappend location “dup”

This adds in addressing expressions to locate to _M_finish;
for example, {addc 0}{addc 0}{addc 4}. Loosely speaking,
only the {addc 4} is necessary.

set location [concat $location $upper_bound_location]

Change ACC into an actual address.
lappend location “indirect”

Swap position of the address and original ACC.
lappend location “swap”

This adds in addressing expressions to locate to _M_start;
for example, {addc 0}{addc 0}{addc 0}. Loosely speaking,
only one {addc 0} is needed.

set location [concat $location $upper_bound_location]
set location [concat $location $lower_bound_location]

Chapter 2: Creating Vector Transformations

20 Version 6.2

Change ACC into an actual address. Now at this point we
should have the actual address of the upper bound and
lower bound on the stack. Taking the difference of these
will yield the extent.

lappend location “indirect”

Final value is the extent times the size of the target type.
lappend location “minus”

Divide this value by the target type size. Push the size of
the target type onto stack.

set target_type_length \
[TV::symbol get $target_type_id length]

lappend location “ldc $target_type_length”

Divide to determine actual extent.
lappend location “div”

Finally specify that this is actually the value to use and not
use it as an address.

lappend location “value”
return $location

}

This procedures is doing something really simple. Unfortu-
nately, the translation of what is something that is simple into
terms that TotalView can understand gets a little complicated.
This routine is just subtracting the first address where data is
stored from the second address where data is stored, then divid-
ing this number by the word size. That is:

(address1 - address2)/word_size

The result is the number of instances in the vector.

Here, using the components created by the callbacks, is the
addressing expression that performs this operation:

dup {addc 0} {addc 0} {addc 4} indirect swap
{addc 0} {addc 0} {addc 0} indirect
minus {ldc 4} div value

Just to make it a little simpler, lets assume that it is:
dup {addc 4} indirect swap indirect minus {ldc 4} div value

In other words, the {addc 0} statements that don’t change the
address have been eliminated.

TABLE 1: Figuring out
the Vector Extent

Op Stack Location
1. — value stack[0] (ACC)
2. dup value

value
stack[0]
stack[1] (ACC)
The value is duplicated.

3. {addc 4} value
value+4

stack[0]
stack[1] (ACC)
Note: addc is defined as follows:
 ACC = ACC + constant
4 is added to the accumulator

The Vector Transformation

Creating Type Transformations 21

vector_-
addressing

Returns the addressing expression for the vector. This provides
a “formula” to access _M_start, which is the first element of the
vector.

proc vector_addressing {symbol_id} {
variable _vector_type_info
array set analysis_info $_vector_type_info($symbol_id)
set lower_bound_location $analysis_info\

(“_Vector_alloc_base_M_start_location”)

4. indirect value
addrE

stack[0]
stack[1] (ACC)
Note: indirect is defined as follows:
 memory[ACC]
The accumulator now points to the
value in an address.

5. swap addrE
value

stack[0]
stack[1] (ACC)
Note: swap changes the positions of
the last two entries on the stack and the
ACC stays as the last entry on the
stack.

6. indirect addrE
addrS

stack[0]
stack[1] (ACC)

7. minus (addrE-addrS) stack[0] (ACC)
Note: minus is defined as follows:
 ACC = stack[depth-1] – ACC
So in this case, the minus operation is:
 ACC = stack[0] - ACC
That is:
 ACC = addrE - addrS
That is, we now have a value that is the
difference between these two
addresses.

8. {ldc 4} (addrE-addrS)
4

stack[0]
stack[1] (ACC)
Set the accumulator to 4.

9. div (addrE-addrS)/4 stack[0] (TOS)
Note: div is defined as follows:
 ACC = stack[depth-1]/ACC
So in this case, the div operation is:
 ACC = stack[0]/4
That is:
 ACC = (addrE-addrS)/4

10. value (addrE-addrS)/4 stack[0] (TOS)
The value at the TOS is treated as a
number.

Op Stack Location

Chapter 2: Creating Vector Transformations

22 Version 6.2

For GCC it is simply address of _M_start.
set location {}

This adds in addressing expressions to set to _M_start; for
example, {addc 0}{addc 0}{addc 0}.

set location [concat $location $lower_bound_location]

Change TOS into an actual address.
lappend location “indirect”
return $location

}

Final Steps Now that everything is defined, create and install the STL vector
transformation.

set type_transformation_id \
[TV::type_transformation create Array]

TV::type_transformation set $type_transformation_id \
name {^(class|struct) (std::)?vector *<.*>$} \
language C++ \
type_transformation_description “GNU Vector”\
validate_callback vector_validate \
lower_bounds_callback vector_lower_bounds \
upper_bounds_callback vector_extent \
addressing_callback vector_addressing \
type_callback vector_type

Convenience routines
The convenience routines are Tcl CLI procedures that take
much of the drudgery out creating transformations as they
extract symbol and scope information for you.

The routines discussed in this section are:

■ “dump_type_transformation” on page 23
■ “ttf_check_location” on page 23
■ “ttf_check_symbol_compiler” on page 23
■ “ttf_debug_puts” on page 23
■ “ttf_extract_offset” on page 24
■ “ttf_get_base_class_id” on page 24
■ “ttf_get_base_class_location” on page 25
■ “ttf_get_containing_image_id” on page 25
■ “ttf_get_single_symbol_from_scope” on page 26
■ “ttf_get_single_symbol_id_from_scope” on page 26
■ “ttf_get_symbol_external_name” on page 27
■ “ttf_is_symbol_of_kind” on page 27
■ “ttf_read_store” on page 27
■ “ttf_resolve_final_type_index” on page 27
■ “ttf_resolve_target_type” on page 28

Convenience routines

Creating Type Transformations 23

dump_type_-
transformation

Dump out all of a type transformation’s properties and values. It
is a good idea to call this routine right after you instantiate a
transformation.

proc dump_type_transformation {id} {
foreach prop [TV::type_transformation properties] {
 ttf_debug_puts [format “%-25s %s” $prop \

[TV::type_transformation get $id $prop]]
}

}

ttf_check_location Given a location of the form {addc n}, strip off the braces { } and
return addc n. If an empty location is passed in, indicating 0, it
returns addc 0.
proc ttf_check_location {location} {

if {[string length $location] == 0} {
return “addc 0”

} else {
regexp “(\[a-z\]+\[\]*\[0-9\]*)” $location match
return [string trim $match]

}
}

ttf_check_-
symbol_compiler

Check to insure that the source file was compiled using the com-
piler for which a transformation is associated.

proc ttf_check_symbol_compiler {symbol_id compiler} {
Walk up the scopes until the containing file is found.

set kind [TV::symbol get $symbol_id kind]
set file_id $symbol_id
while {$kind != "file"} {

set file_id [TV::symbol get $file_id scope_owner]
set kind [TV::symbol get $file_id kind]

}

Get the compiler used on the file.
set compiler_kind [TV::symbol get $file_id compiler_kind]

 # See if the compiler kind matches the incoming one.
if { $compiler_kind != $compiler } {

return 0
}
return 1

}

ttf_debug_puts When the _ttf_debug global variable is set to true, display TTF-
related debugging output.

proc ttf_debug_puts {{string ““}} {
variable _ttf_debug

if {$_ttf_debug} {
puts $string

}
}

Chapter 2: Creating Vector Transformations

24 Version 6.2

ttf_extract_offset Given an addressing expression that will only contain “addc n”,
return n.

proc ttf_extract_offset {addressing_expr} {
if {[llength $addressing_expr] != 1} {

return 0
}

Unwind the list.
set addressing_expr [lindex $addressing_expr 0]
if {[lindex $addressing_expr 0] != “addc”} {

return 0
} else {

return [lindex $addressing_expr 1]
}

}

ttf_get_base_-
class_id

Find the actual base class of a symbol. This assumes that only a
single base class exists for the symbol.

This procedure obtains the base class member of the given
symbol_id. This is not, however, the actual base class. To get it,
we need to get the type_index of this base class member and
then look up the corresponding symbol for it.

proc ttf_get_base_class_id {symbol_id} {
Get the base class member of the symbol_id.
ttf_get_single_symbol_from_scope returns a list of
information.

set base_class_symbol \
[ttf_get_single_symbol_from_scope \

$symbol_id “member” “!base_class”]
if { $base_class_symbol == ““ } {

return ““
}

From this list, extract the value of the “id” sublist. For
example, a value such as “1|25” might be returned.

if {![regexp {(id)([0-9]+\|[0-9]+)} \
 $base_class_symbol match tag base_class_symbol_id]} {
return ““

}

Get the type_index of the symbol. This will be a triple that
looks something like “<2,0,49>”. TotalView uses this triple
to locate information that it stores about your program’s
symbols.

set type_index \
[TV::symbol get $base_class_symbol_id type_index]

Get the containing image ID for the symbol. (An image can
be thought of as the set of processes being run that make
up your program.) The returned value will look something
like “1|24”.

set image_id \
[ttf_get_containing_image_id $symbol_id]

When TotalView reads the image, it created an entry in its
internal symbol table for all of your program’s data types.

Convenience routines

Creating Type Transformations 25

Now that it has located the image_id, it can now locate the
internal ID of the data type.

set base_class_symbol_ids \
[capture TV::scope lookup $image_id in_scope \

$type_index]
if {[llength $base_class_symbol_ids] != 1} {

Did not find the correct number!
return ““

}

Get the actual base class ID.
set base_class_id [lindex $base_class_symbol_ids 0]

Make sure that TotalView has the final type. You need to
do this because TotalView may defer reading in all
information about the symbol until it actually needs to
use the information.

set base_class_id [TV::type resolve_final $base_class_id]

Return the ID.
return $base_class_id

}

ttf_get_base_-
class_location

Look up the location offset of the base class associated with a
symbol. This assumes only a single base class for the given sym-
bol. That is, this is undefined if you are using multiple inherit-
ance for a data type.

proc ttf_get_base_class_location {symbol_id} {
Get the base class member of the given symbol_id. This
routine returns a list of the symbol’s attributes.

set base_class_symbol \
[ttf_get_single_symbol_from_scope \

$symbol_id “member” “!base_class”]
if { $base_class_symbol == ““ } {

return ““
}

From this list, extract the ID’s value.
if {![regexp {(id)([0-9]+\|[0-9]+)} \

 $base_class_symbol match tag base_class_symbol_id]} {
return ““

}

Return the location property.
return [TV::symbol get $base_class_symbol_id location]

}

ttf_get_-
containing_-
image_id

Given a valid symbol ID, recursively walk backwards up the
scope until it locates the containing image for the symbol.

proc ttf_get_containing_image_id {symbol_id} {
Check the kind and see if this is an image. If it is, we’re
done.

set base_kind [TV::symbol get $symbol_id kind]
if {$base_kind == “image”} {

Get the soid of the image.
set image_id [TV::symbol get $symbol_id id]
return $image_id

Chapter 2: Creating Vector Transformations

26 Version 6.2

}

Recurse using the scope_owner.
set scope_owner [TV::symbol get $symbol_id scope_owner]
return [ttf_get_containing_image_id $scope_owner]

}

ttf_get_single_-
symbol_-
from_scope

Given a symbol that is a scope, locate a single symbol from
within its scope of symbols. This procedure uses the kind and
base_name properties of the symbol to match the desired sym-
bol.
proc ttf_get_single_symbol_from_scope \

{symbol_id kind base_name} {

Get all the symbols in the scope. For this vector, there are
three sets of information: one for _M_start, _M_finish, and
_M_end_of_storage.

set symbols [split [string trim \
[capture TV::scope dump $symbol_id] “\n”] “\n”]

foreach symbol $symbols {
Get the ID (soid) of the symbol.

if {![regexp {(id)([0-9]+\|[0-9]+)} \
$symbol match tag soid]} {

continue
}

Get the kind of the symbol. For example, look for
_M_start.

set symbol_kind [TV::symbol get $soid kind]
if {$symbol_kind != $kind} {

continue
}

Get the base_name of the symbol.
set symbol_base_name [TV::symbol get $soid base_name]
if {$symbol_base_name != $base_name} {

continue
}

The kind and base_name match. This is the symbol
being looked for.

return $symbol
}

We’ve fallen through the loop without finding anything.
return ““

}

ttf_get_single_-
symbol_id_from_-
scope

Look up the symbol within the scope based upon the kind and
base_name and returns the id of the found symbol.
proc ttf_get_single_symbol_id_from_scope \

{symbol_id kind base_name} {

The next statement returns a list that looks something like:
{kind member} {id 1|78} ... {type_index <2,0,409>}
All we’re going to do is extract the “id” component of the
list.

Convenience routines

Creating Type Transformations 27

set symbol [ttf_get_single_symbol_from_scope \
$symbol_id $kind $base_name]

What we have is the raw symbol. Obtain the ID from it.
if {![regexp {(id)([0-9]+\|[0-9]+)} \

$symbol match tag symbol_id]} {
return ““

}
return $symbol_id

}

ttf_get_symbol_-
external_name

Return the external_name of a symbol. For example, here is
what was returned when this routine was manually tested:

 class vector<char *,allocator<char *> >

proc ttf_get_symbol_external_name {symbol_id} {
return [TV::symbol get $symbol_id external_name]

}

ttf_is_symbol_-
of_kind

Check to see if the symbol is of the specified kind.
proc ttf_is_symbol_of_kind {symbol_id kind} {

set symbol_kind [TV::symbol get $symbol_id kind]
if {$symbol_kind != $kind} {

return 0
}

return 1
}

ttf_read_store Read a value from an absolute address.
proc ttf_read_store {address {type long}} {

set res [capture dprint “*($type *)$address”]
Strip out just the value.

regexp {^.*= ([^]*)} $res null res

return $res
}

ttf_resolve_-
final_type_index

After resolving a target_type_index, return its type_index. That
is, some symbols only serve to hold a reference to another sym-
bol. For example, a typedef is a reference to the aliased type.
Similarly, a const-qualified type is a reference to the non-consts
qualified type. These reference types are called undiscovered
symbols. This operation, when performed on an undiscovered
symbol, returns the symbol the type refers to. This allows it to
return that symbol’s type_index.

proc ttf_read_store {address {type long}} {
Gets the ID of the target type index.

set ids [capture TV::scope lookup $image_id in_scope \
$target_type_index]

if {[llength $ids] != 1} {
Did not find the correct number.
return ““

}

Chapter 2: Creating Vector Transformations

28 Version 6.2

Get the actual base class ID.
set id [lindex $ids 0]

Resolve to the final type of the ID.
set id [TV::type resolve_final $id]

Return the target type index of the final ID.
return [TV::symbol get $id type_index]

}

ttf_resolve_-
target_type

Return the ID of the target type, resolved to a non-pointer type.
proc ttf_resolve_target_type {type_index image_id} {

Look up the ID of the type index.
set type_id \

[TV::scope lookup $image_id in_scope $type_index]

Resolve the type back to base type.
set base_type_id [TV::type resolve_final $type_id]

Make sure that a kind of “pointer_type” was returned.
if {[TV::symbol get $base_type_id kind] != “pointer_type”}
{
 return $base_type_id
}

Determine what the actual type is by making sure all sym-
bols are read.

TV::symbol read_delayed $base_type_id

Get the target type index for the base type.
set target_type_index \

[TV::symbol get $base_type_id target_type_index]

Look up the ID of the type.
set target_type_id \
 [TV::scope lookup $image_id in_scope $target_type_index]

Test before returning to prevent opaque_type from
returning. This is a TotalView bug.

if {[TV::symbol get $target_type_id kind] == \
“opaque_type”} {

 return false
}

See if the type is undiscovered. It so, resolve it.
if {[TV::symbol get $target_type_id kind] == \

“ds_undiscovered_type” } {
set target_type_id \

[TV::type resolve_final $target_type_id]
}
return $target_type_id

}

Creating Type Transformations 29

TTF CLI
Commands 3

When you create a type transformation, you will make
extensive use of the TV::scope and TV::symbol commands.
In addition, you may need to use the TV::type command.

After you have created your callbacks, you will use the
TV::type_transformation command to install it.

Here is where you will find these commands:

■ “scope” on page 30.
■ “symbol” on page 32
■ “type” on page 43
■ “type_transformation” on page 46

The information presented on TV::type duplicates informa-
tion found in the TOTALVIEW REFERENCE GUIDE. In contrast,
the other three are not described in that book.

Chapter 3: TTF CLI Commands

30 Version 6.2

scope Returns information about a symbol’s scope

Format: TV::scope action [object-id] [other-args]

Arguments: action The action to perform, as follows:
cast Attempts to find or create the type named by

the other-args argument in the given scope.
commands Displays the subcommands that you can use. The

CLI responds by displaying the subcommands
shown here. Do not use additional arguments with
this subcommand.

dump Dump all properties of all symbols in the scope
and in the enclosed scope.

get Returns properties of the symbols whose soids
are specified. Specify the kinds of properties us-
ing the other-args argument.

If you use the –all option as an object-id, the CLI
returns a list containing one (sublist) element for
each object.

lookup Look up a symbol by name. Specify the kind of
lookup using the other-args argument. The values
you can enter are:

by_language_rules: Use the language rules of the
language of the scope to find a single name.

by_path: Look up a symbol using a pathname.

by_type_index: Look up a symbol using a type in-
dex.

in_scope: Look up a name in the given scope and
in all enclosing scopes, and in the global scope.

lookup_keys Displays the kinds of lookup operations that you
can perform.

properties Displays the properties that the CLI can access.
Do not use additional arguments with this option.
The arguments displayed are those that are dis-
played for the scope of all types. Additional prop-
erties also exist but are not shown.(Only the ones
used by all are visible.) For more information, see
TV::symbol.

walk Walk the scope, calling Tcl commands at particu-
lar points in the walk. The commands are named
using the following options:

–pre_scope tcl_cmd: Names the commands called
before walking a scope.

–pre_sym tcl_cmd: Names the commands called
before walking a symbol.

scope

Creating Type Transformations 31

–post_scope tcl_cmd: Names the commands
called after walking a scope.

–post_symbol tcl_cmd: Names the commands
called after walking a symbol.

tcl_cmd: Names the commands called for each
symbol.

object-id The ID of a scope.
other-args Arguments required by the get subcommand.

Description: The TV::scope command lets you examine and set a scope’s
properties and states.

You’ll find many examples of this command being used in Chap-
ter 2, “Creating Vector Transformations,” on page 13.

Chapter 3: TTF CLI Commands

32 Version 6.2

symbol Returns or sets internal TotalView symbol
information

Format: TV::symbol action [object-id] [other-args]

Arguments: action The action to perform, as follows:
commands Displays the subcommands that you can use. The

CLI responds by displaying the subcommands
shown here. Do not use additional arguments with
this subcommand.

dump Dumps all properties of the symbol whose soid
(symbol object ID) is named. Do not use addi-
tional arguments with this command.

get Returns properties of the symbols whose soids
are specified here. The other-args argument
names the properties to be returned.

properties Displays the properties that the CLI can access.
Do not use additional arguments with this option.
These properties are discussed later in this sec-
tion.

read_delayed Only global symbols are initially read; other sym-
bols are only partially read. This command forces
complete symbol processing for the compilation
units that contain the named symbols.

resolve_final Performs a sequence of resolve_next operations
until the symbol is no longer undiscovered. If you
apply this operation to a symbol that is not undis-
covered, it returns the symbol itself.

resolve_next Some symbols only serve to hold a reference to
another symbol. For example, a typedef is a ref-
erence to the aliased type, or a const-qualified
type is a reference to the non-consts qualified
type. These reference types are called undiscov-
ered symbols. This operation, when performed on
an undiscovered symbol, returns the symbol the
type refers to. When this is performed on a sym-
bol, it returns the symbol itself.

rebind Changes one or more structural properties of a
symbol. These operations can crash TotalView or
cause TotalView to produce inconsistent results.
The properties that you can change are:

address: the new address:

base_name: the new base name. The symbol
must be a base name.

line_number: the new line number. The symbol
must be a line number symbol.

symbol

Creating Type Transformations 33

loader_name: the new loader name and a file
name.

scope: the soid of a new scope owner.

type_index: the new type index, in the form
<n, m, p>. The symbol must be a type.

object-id The ID of a symbol.

other-args Arguments required by the get subcommand.

Description: The TV::symbol command lets you examine and set the symbol
properties and states.

Symbol
Properties

The following table lists the properties associated with the sym-
bols information that TotalView stores. Not all of this informa-
tion will be useful when creating transformations. However, it is
possible to come across some of these properties and this infor-
mation will help you decide if you need to use it in your transfor-
mation. In general, the properties used in the transformation
files that Etnus provided will be the ones that you will use.

TABLE 1: Symbol Properties

Symbol Kind
Has
base_name

Has
type_index Property

aggregate_type ✔ ✔ aggregate_kind
artificial
external_name

full_pathname
id
kind

length
logical_scope_owner
scope_owner

array_type ✔ ✔ artificial
data_addressing
element_addressing
external_name
full_pathname
id

index_type_index
kind
logical_scope_owner
lower_bound
scope_owner
stride_bound

submembers
target_type_index
upper_bound
validator

block ✔ address_class
artificial
full_pathname

id
kind
length

location
logical_scope_owner
scope_owner

char_type ✔ ✔ artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner

code_type ✔ ✔ artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner

common ✔ address_class
artificial
full_pathname

id
kind
location

logical_scope_owner
scope_owner

ds_undis-
covered_type

✔ ✔ artificial
full_pathname
id

kind
logical_scope_owner
scope_owner

target_type_index

enum_type ✔ ✔ artificial
enumerators
external_name

full_pathname
id
kind

logical_scope_owner
scope_owner
value_size

Chapter 3: TTF CLI Commands

34 Version 6.2

error_type ✔ ✔ artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner

file ✔ artificial
compiler_kind
delayed_symbol
demangler

full_pathname
id
kind
language

logical_scope_owner
scope_owner

float_type ✔ ✔ artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner

function_type ✔ ✔ artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner

image ✔ artificial
full_pathname

id kind

int_type ✔ ✔ artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner

label ✔ address_class
artificial
full_pathname

id
kind
location

logical_scope_owner
scope_owner

linenumber address_class
artificial
full_pathname

id
kind
location

logical_scope_owner
scope_owner

loader_symbol address_class
artificial
full_pathname

id
kind
length

location
logical_scope_owner
scope_owner

member ✔ address_class
artificial
full_pathname
id

inheritance
kind
location
logical_scope_owner

ordinal
scope_owner
type_index

module ✔ artificial
full_pathname

id
kind

logical_scope_owner
scope_owner

named_constant ✔ artificial
full_pathname
id

kind
length
logical_scope_owner

scope_owner
type_index
value

namespace ✔ artificial
full_pathname

id
kind

logical_scope_owner
scope_owner

opaque_type ✔ ✔ artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner

pathname_-
reference_-
symbol

✔ artificial
id
full_pathname

kind
lookup_scope
logical_scope_owner

resolved_symbol_-
pathname
scope_owner

pointer_type ✔ artificial
external_name
full_pathname
id

kind
length
logical_scope_owner
scope_owner

target_type_index
validator

TABLE 1: Symbol Properties

Symbol Kind
Has
base_name

Has
type_index Property

symbol

Creating Type Transformations 35

The figure on the following page shows how these symbols are
related. Here are definitions of the properties associated with
these symbols.

address_class contains the location for a variety of objects
such as a func, global_var, and a tls_global.

aggregate_kind One of the following: struct, class, or union.
artificial A Boolean (0 or 1) value where true indicates

that the compiler generated the symbol.
compiler_kind The compiler or family of compiler used to cre-

ate the file. For example, gnu, xlc, intel, and so
on.

data_addressing Contains additional operands to get from the
base of an object to its data. For example, a
Fortran by-desc array contains a descriptor
data structure. The variable points to the
descriptor. If you do an addc operation on the

qualified_type ✔ ✔ artificial
external_name
full_pathname

id
kind
logical_scope_owner

qualification
scope_owner
target_type_index

soid_reference_-
symbol

✔ artificial
full_pathname
id

kind
logical_scope_owner
resolved_symbol_id

scope_owner

stringchar_type ✔ ✔ artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner

subroutine ✔ address_class
artificial
full_pathname
id

kind
length
location
logical_scope_owner

return_type_index
scope_owner
static_chain
static_chain_height

typedef ✔ ✔ artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner
target_type_index

variable ✔ address_class
artificial
full_pathname
id

is_argument
kind
location
logical_scope_owner

ordinal
scope_owner
type_index

void_type ✔ ✔ artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner

TABLE 1: Symbol Properties

Symbol Kind
Has
base_name

Has
type_index Property

Chapter 3: TTF CLI Commands

36 Version 6.2

location located_symbol

soid_obj symbol

named_constant

scope

undiscovered_symbol

type

block

code_unit subroutine

common

file

image

label

linenumber

loader_symbol

member

variable

module

namespace

pathname_reference_symbol

symbol_bag

aggregate_type

soid_reference_symbol

char_type

code_type

enum_type

error_type

float_type

function_type

intlike_type

int_type

void_type

opaque_type

qualified_type

stringchar_type

undiscovered_type

array_type

pointer_type

reference_type

typedef

ds_undiscovered_type

Abstract Instantiated virtual non-virtual

External ClassSymbol Table ClassKey:

symbol

Creating Type Transformations 37

descriptor, you can then do an indirect opera-
tion to locate the data.

delayed_symbol Indicates if a symbol has been full or partially
read-in. The following constants are or’d and
returned: skim, index, line, and full.

demangler The name of demangler used by your compiler.
element_addressing

The location containing additional operands
that let you go from the data’s base location to
an element.

enumerators Name of the enumerator tags. For example, if
you have something like enum[R,G,B], the tags
would be R, G, and B.

external_name When used in data types, it translates the
object structure to the type name for the lan-
guage. For example, if you have a pointer that
points to an int, the external name is int *.

full_pathname This is the # separated static path to the vari-
able. For example, ##image#file#external-
name... .

id The internal object handle for the symbol.
These symbols always take the form
number|number.

index_type_indexThe array type’s index type_index. For exam-
ple, this indicates if the index is a 16-, 32-, 64-
bit, and so on.

inheritance For C++ variables, this string is as follows:
[virtual] [{ private | protected | public }]
[base class]

is_argument A true/false value indicating if a variable was a
parameter (dummy variable) passed into the
function.

kind One of the symbol types listed in the first col-
umn of the previous table.

language A string containing a value such as C, C++, or
Fortran.

Desc

Indirect

v

Dataaddc

Chapter 3: TTF CLI Commands

38 Version 6.2

length The byte size of the object. For example, this
might represent the size of an array or a sub-
routine.

location The location in memory where an object’s stor-
age begins.

logical_scope_owner
The current scope’s owner as defined by the
language’s rules.

lookup_scope This is a pathname reference symbol that
refers to the scope in which to look up a path-
name.

lower_bound The location containing the array’s lower
bound. This is a numeric value, not the loca-
tion of the first array item.

ordinal The order in which a member or variable
occurred within a scope.

qualification A qualifier to a data type such as const or vola-
tile. These can be chained together if there is
more than one qualifier.

resolved_symbol_id
The soid to lookup in a soid reference symbol.

resolved_symbol_pathname
The pathname to lookup in a fortran reference
symbol.

return_type_index
The data type of the value returned by a func-
tion.

image

c:: c::f

file

logical_scope_owner

scope_owner

image

c:: c::f

file

volatile const int

const intvolatile

symbol

Creating Type Transformations 39

scope_owner The ID of the symbol’s scope owner. (This is
illustrated by the figure within the
logical_scope_owner definition.)

static_chain The location of a static link for nested subrou-
tines.

static_chain_height
For nested subroutines, this indicates the nest-
ing level.

stride_bound Location of the value indicating an array’s
stride.

submembers If you have an array of aggregates or pointers
and you have already dived on it, this property
gives you a list of {name type} tuples where
name is the name of the member of the array
(or * if it's an array of pointers), and type is the
soid of the type that should be used to dive in
all into that field.

target_type_index
The type of the following entities: array,
ds_undiscovered_type, pointer, and typedef.

type_index One of the following: member, variable, or
named_constant.

upper_bound The location of the value indicating an array’s
upper bound or extent.

validator The name of an array or pointer validator. This
looks at an array descriptor or pointer to deter-
mine if it is allocated and associated.

value For enumerators, this indicates the item’s
value in hexadecimal bytes.

value_size For enumerators, this indicates the length in
bytes

Symbol
Namespaces

The symbols described in the previous section all reside within
namespaces. Like symbols, namespaces also have properties.
The figure on the next page illustrates how these namespaces
are related.

The following table lists the properties associated with a
namespace.

Symbol Namespaces Properties
block_symname base_name
c_global_symname base_name loader_name

loader_file_path
c_local_symname base_name
c_type_symname base_name type_index
cplus_global_symname base_name cplus_template_types

cplus_class_name cplus_type_name

Chapter 3: TTF CLI Commands

40 Version 6.2

nameset

address_nameset

base_nameset

cplus_nameset

file_nameset

fortran_nameset

image_nameset

linenumber_nameset

loader_nameset

type_nameset

file_symname

block_symname

label_symname

image_symname

module_symname

c_global_symname

c_local_symname

cplus_global_symname

cplus_local_symname

fortran_global_symname

fortran_local_symname

c_type_symname

cplus_type_symname

fortran_type_symname

linenumber_symname

loader_symname

type_symname

symname (Factory Class)

Abstract Instantiated virtual non-virtual

External ClassSymname/Nameset ClassKey:

symbol

Creating Type Transformations 41

Many of the following properties are used in more than one
namespace. The explanations for these properties will assume a
limited context as their use is similar. Some of these definitions
assume that you’re are looking at the following function proto-
type:

void c::foo<int>(int &)

base_name The name of the function. For example, foo.
cplus_class_name

The C++ class name. For example, c.
cplus_local_name

Not used.
cplus_overload_list

The function’s signature. For example, int &.
cplus_template_types

The template used to instantiate the function.
For example: <int>.

cplus_type_name
The data type of the returned value; for exam-
ple, void.

cplus_local_name loader_file_path
cplus_overload_list loader_name

cplus_local_symname base_name cplus_overload_list
cplus_class_name cplus_template_types
cplus_local_name cplus_type_name

cplus_type_symname base_name cplus_template_types
cplus_class_name cplus_type_name
cplus_local_name type_index
cplus_overload_list

file_symname base_name directory_path
directory_hint

fortran_global_symname base_name loader_file_path
fortran_module_name loader_name
fortran_parent_function_name

fortran_local_symname base_name
fortran_parent_function_name
fortran_module_name

fortran_type_symname base_name fortran_parent_function_name
fortran_module_name type_index

image_symname base_name member_name
directory_path node_name

label_symname base_name
linenumber_symname linenumber
loader_symname loader_file_path loader_name
module_symname base_name
type_symname type_index

Symbol Namespaces Properties

Chapter 3: TTF CLI Commands

42 Version 6.2

directory_hint The directory to which you were attached when
you started TotalView.

directory_path Your file’s pathname as it is named within your
program.

fortran_module_name
The name of your module. Typically, this looks
like module‘var or module‘subr‘var.

fortran_parent_function_name
The parent of the subroutine. For example, the
parent is module in a reference such as mod-
ule‘subr. If you have an inner subroutine, the
parent is the outer subroutine.

linenumber The line number at which something occurred.
loader_file_path The file’s pathname.
loader_name The mangled name.
member_name In a library, you might have an object refer-

ence. For example, libC.a(foo.so). foo.so is the
member name.

node_name Not used.
type_index A handle that points to the type definition. It’s

format is <number,number,number>.

type

Creating Type Transformations 43

type Gets and sets type properties

Format: TV::type action [object-id] [other-args]

Arguments: action The action to perform, as follows:
commands Displays the subcommands that you can use. The

CLI responds by displaying the four subcom-
mands shown here. Do not use other arguments
with this option.

get Gets the values of one or more type properties.
The other-args argument can include one or more
property names. The CLI returns these values in a
list, and places them in the same order as the
property names you entered.

If you use the –all option as an object-id, the CLI
returns a list containing one (sublist) element for
each object.

properties Lists a type’s properties. Do not use other argu-
ments with this option.

set Sets the values of one or more type properties.
The other-args argument contains paired property
names and values.

object-id An identifier for an object. For example, 1 rep-
resents process 1, and 1.1 represents thread 1
in process 1. If you use the –all option, the oper-
ation is carried out on all objects of this class in
the current focus.

other-args Arguments required by the get and set sub-
commands.

Description: The TV::type command lets you examine and set the type prop-
erties and states. These states and properties are:

enum_values For an enumerated type, a list of {name value}
pairs giving the definition of the enumeration.
If you apply this to a non-enumerated type, the
CLI returns an empty list.

id The ID of the object.
image_id The ID of the image in which this type is

defined.
language The language of the type.
length The length of the type.
name The name of the type; for example, class foo.
prototype The ID for the prototype. If the object is not

prototyped, the returned value is {}.
rank (array types only) The rank of the array.

Chapter 3: TTF CLI Commands

44 Version 6.2

struct_fields (class/struct/union types only). A list of lists
giving the description of all the type’s fields.
Each sublist contains the following fields:
{ name type_id addressing properties }
where:
name is the name of the field.
type_id is simply the type_id of the field.
addressing contains additional addressing
information that points to the base of the field.
properties contains an additional list of proper-
ties in the following format:
“[virtual] [public|private|protected] base
class”
If no properties apply, this string is null.
If you use get struct_fields for a type that is not
a class, struct, or a union, the CLI returns an
empty list.

target For an array or pointer type, returns the ID of
the array member or target of the pointer. If
this is not applied to one of these types, the CLI
returns an empty list.

type Returns a string describing this type. For
example, signed integer.

type_values Returns all possible values for the type prop-
erty.

Examples: TV::type get 1|25 length target
Finds the length of a type and (assuming it is a
pointer or an array type) the target type. The
result may look something like:
4 1|12

The following example uses the TV::type properties command to
obtain the list of properties:

d1.<> \
proc print_type {id} {

foreach p [TV::type properties] {
puts [format "%13s %s" $p [TV::type get $id $p]]

type

Creating Type Transformations 45

}
}
d1.<> print_type 1|6

d1.<>

enum_values
id

image_id
language

length
name

prototype
rank

struct_fields
target

type
type_values

1|6
1|1
f77
4
<integer>

0

Signed Integer
{Array} {Array of charac-
ters} {Enumeration}...

Chapter 3: TTF CLI Commands

46 Version 6.2

type_transformation Creates type transformations and
examine properties

Format: TV::type_transformation action [object-id] [other-args]

Arguments: action The action to perform, as follows:
commands Displays the subcommands that you can use. The

CLI responds by displaying the subcommands
shown here. Do not use additional arguments with
this subcommand.

create Creates a new transformation object. The object-
id argument is not used; other-args is Array, List,
Map, or Struct, indicating the type of transforma-
tion being created. You can change a transforma-
tion’s properties up to the time you install it. After
being installed, you can longer change them.

get Gets the values of one or more transformation
properties. The other-args argument can include
one or more property names. The CLI returns
these property values in a list whose order is the
same as the property names you entered.

If you use the -all option as an object-id, the CLI
returns a list containing one (sublist) element for
the object.

properties Displays the properties that the CLI can access.
Do not use additional arguments with this option.
These properties are discussed later in this sec-
tion.

set Sets the values of one or more properties. The
other-args argument consists of pairs of property
names and values. The argument pairs that you
can set are listed later in this section.

object-id The type transformation ID. This value is
returned when you crate a new transforma-
tion. For example, 1 represents process 1. If
you use the -all option, the subcommand is car-
ried out on all objects of this class in the cur-
rent focus.

other-args Arguments required by get and set subcom-
mands.

Description: The TV::type_transformation command lets you define and
examine properties of a type transformation. The states and
properties you can set are:

addressing_callback
Names the procedure that locates the address
of the start of an array. The call structure for
this callback is:

type_transformation

Creating Type Transformations 47

addressing_callback id
where id is the symbol ID of the symbol that
was validated using the validate_callback’s
procedure.
This callback defines a TotalView addressing
expression that computes the starting address
of an array’s first element.

compiler Reserved for future use.
id The type transformation ID returned from a

create operation.
language The language property specifies source lan-

guage for the code of the aggregate type (class)
to transform. This is always C++.

list_element_count_addressing_callback
Names the procedure that determines the total
number of elements in a list. The call structure
for this callback is:
list_element_count_addressing_callback id
where id is the symbol ID of the symbol that
was validated using the validate_callback’s
procedure.
This callback defines an addressing expres-
sion that specifies how to get to the member of
the symbol that specifies the number of ele-
ments in the list.
If your data structure does not have this ele-
ment, you still must use this callback. In this
case, simply return {nop} as the addressing
expression and the transformation will count
the elements by following all the pointers. This
can be very time consuming.

list_element_data_addressing_callback
Names the procedure that defines an address-
ing expression that specifies how to access the
data member of a list element. The call struc-
ture for this callback is:
list_element_data_addressing_callback id
where id is the symbol ID of the symbol that
was validated using the validate_callback’s
procedure.

list_element_next_addressing_callback
Names the procedure that defines an address-
ing expression that specifies how to access the
next element of a list. The call structure for this
callback is:
list_element_next_addressing_callback id

Chapter 3: TTF CLI Commands

48 Version 6.2

where id is the symbol ID of the symbol that
was validated using the validate_callback’s
procedure.

list_element_prev_addressing_callback
Names the procedure that defines an address-
ing expression that specifies how to access the
previous element of a list. The call structure
for this callback is:
list_element_prev_addressing_callback id
where id is the symbol ID of the symbol that
was validated using the validate_callback’s
procedure.
This property is optional. For example, you
would not use it in a singly linked list.

list_end_value Specifies if a list is terminated by NULL or the
head of the list. Enter one of the following:
NULL or ListHead

list_first_element_addressing_callback
Names the procedure that defines an address-
ing expression that specifies how to go from the
head element of the list to the first element of
the list. It is not always the case that the head
element of the list is the first element of the
list. The call structure for this callback is:
list_element_first_element_addressing_callback id
where id is the symbol ID of the symbol that
was validated using the validate_callback’s
procedure.

list_head_addressing_callback
Names the procedure that defines an address-
ing expression to obtain the head element of
the linked list. The call structure for this call-
back is:
list_head_addressing_callback id
where id is the symbol ID of the symbol that
was validated using the validate_callback’s
procedure.

lower_bounds_callback
Names the procedure that obtains a lower
bound value for the array type being trans-
formed. For C/C++ arrays, this value is always
0. The call structure for this callback is:
lower_bounds_callback id
where id is the symbol ID of the symbol that
was validated using the validate_callback’s
procedure.

type_transformation

Creating Type Transformations 49

name Contains a regular expression that checks to
see if a symbol is eligible for type transforma-
tion. This regular expression must match the
definition of the aggregate type (class) being
transformed.

type_callback The type_callback property is used in two
ways.
(1) When it is used within a list or vector trans-
formation, it names the procedure that deter-
mines the type of the list or vector element.
The callback procedure takes one parameter,
the symbol ID of the symbol that was validated
during the callback to the procedure specified
by the validate_callback. The call structure for
this callback is:
type_callback id
where id is the symbol ID of the symbol that
was validated using the validate_callback’s
procedure.
(2) When it is used within a struct transforma-
tion, it names the procedure that specifies the
data type to be used when displaying the struct.

type_transformation_description
A string containing a description of what is
being transformed. For example, you might
enter “GNU Vector”.

upper_bounds_callback
Names the procedure that defines an address-
ing expression that computes the extent (num-
ber of elements) in an array. The call structure
for this callback is:
upper_bounds_callback id
where id is the symbol ID of the symbol that
was validated using the validate_callback’s
procedure.

validate_callback
Names a procedure that is called when a data
type matches the regular expression specified
in the name property. The call structure for
this callback is:
validate_callback id
where id is the symbol ID of the symbol being
validated.
Your callback procedure check the symbol’s
structure to insure that it should be trans-
formed. While not required, most users will
extract symbol information such as its type and

Chapter 3: TTF CLI Commands

50 Version 6.2

its data members while validating the data
type. The callback procedure must return a
Boolean value, where true means the symbol is
valid and can be transformed.

Creating Type Transformations 51

Index

Symbols
_M_finish 18
_M_start analysis,

_Vector_alloc_base mem-
ber and 16

_ttf_debug variable 9
_Vector_alloc_base analysis 16
_Vector_alloc_base member and

_M_start analysis 16
_Vector_base analysis 15

A
abs operator 10
ACC symbol 9
action points

deleting 43
activating type transformations 2
addc operator 9, 10
address 32
addressing expressions 3, 6, 9

format 9
Addressing Expressions, Creat-

ing 9
Addressing Expressions, Using 6
addressing_callback 5, 46
aggregate data 1
All, Used by 4
analysis, _Vector_alloc_base 16
analysis, _Vector_alloc_base

member and _M_start 16
analysis, _Vector_base 15
and operator 10
array bounds 5
Array Callbacks, Unique to 5
array first element, locating 5
array transformations 3

B
base_name 32
bitfield_index operator 10
bounds 5

by_language_rules 30
by_path 30
by_type_index 30

C
C++ STL instantiation 2
callbacks 3

addressing_callback 5
list_element_count_addressin

g_callback 5
list_element_data_addressing

_callback 6
list_element_next_addressing

_callback 6
list_element_prev_addressing

_callback 6
list_first_element_addressing

_callback 5
list_head_addressing_callbac

k 5
lower_bounds_callback 5
type_callback 5
upper_bounds_callback 5
validate_callback 5

Callbacks, Quick Definitions of 4
Callbacks, Unique to Array 5
Callbacks, Unique to List 5
cast subcommand 30
class hierarchy. moving through

6
CLI commands

TV::scope 30
TV::symbol 32
TV::type 43
TV::type_transformatoin 46

commands verb
type command 43

compiler property 5, 47
compiler, naming 5
Convenience Routines 22
create subcommand 46

Creating Addressing Expres-
sions 9

D
data type

identifying 5
Data, Exploring Your 8
Definitions of Callbacks, Quick 4
deleting action points 43
div operator 10
drop operator 10
dump subcommand 30, 32
dump_type_transformation 23
dup operator 10

E
enum_values property 43
Exploring Your Data 8
expressions, addressing 9
Expressions, Creating Address-

ing 9
Expressions, Using Addressing 6
extent 20

F
figures

STL Vector (Revisited) 6
Vector Transformation 2

File > Preferences command 2
Final Steps 22
Final steps 18
Functions, Convenience 22

G
GCC vector 14
get subcommand 30
get verb

type command 43
GNU C++ STL instantiation 2

I
id property 43, 47

L

52 Version 6.2

image_id property 43
indirect operator 10
indirect_small operator 11
Instantiating Transformations 3
iterative development 8

L
language property 5, 43, 47
ldac operator 11
ldal operator 11
ldar operator 11
ldatls operator 11
ldc operator 11
ldgtls operator 11
ldl operator 11
ldm operator 11
ldnl operator 11
ldr operator 11
length property 43
line_number 32
List Callbacks, Unique to 5
list transformation overview 4
list transformations 3
list_element_count_addressing_c

allback 5, 47
list_element_data_addressing_ca

llback 6, 47
list_element_next_addressing_ca

llback 6, 47
list_element_prev_addressing_ca

llback 6, 48
list_end_value property 48
list_first_element_addressing_ca

llback 5, 48
list_head_addressing_callback 5,

48
loader_name 33
logical model 2
lookup subcommand 30
lookup_keys subcommand 30
lower_bounds_callback 5, 48

M
map transformations 3
member and _M_start analysis,

_Vector_alloc_base 16
memory operation 9
minus operator 10
mul operator 10

N
name property 4, 43, 49
Namespaces, Symbol 39
neg operator 10
Non-vector Transformations 13
not operator 10

O
obtaining the symbol ID 8
operators

 10

abs 10
addc 9, 10
and 10
bitfield_index 10
div 10
drop 10
dup 10
indirect 10
indirect_small 11
ldac 11
ldal 11
ldar 11
ldatls 11
ldc 11
ldgtls 11
ldl 11
ldm 11
ldnl 11
ldr 11
minus 10
mul 10
neg 10
not 10
or 10
over 10
plus 10
remove_indirection 11
rot 10
shl 10
shr 10
shra 10
swap 10

or operator 10
over operator 10

P
plus operator 10
post_scope 31
post_symbol 31
pre_scope 30
pre_sym 30
properties

compiler 5
enum_values 43
id 43
image_id 43
language 5, 43
length 43
name 4, 43
prototype 43
rank 43
struct_fields 44
type_transformation 5

properties verb
type command 43

Properties, Symbol 33
prototype property 43

Q
Quick Definitions of Callbacks 4

R
rank property 43
read_delayed subcommand 32
rebind subcommand 32
regular expression 7
regular expressions 4
remove_indirection operator 11
resolve_final subcommand 32
resolve_next subcommand 32
rot operator 10

S
scope 33
scope command 30
set verb

type command 43
shl operator 10
shr operator 10
shra operator 10
soid 14
source command 9
stack operation 10
Steps, Final 22
steps, Final 18
STL instantiation 2
STL Vector (Revisited) figure 6
struct transformation overview 4
struct transformations 3
struct_fields property 44
swap operator 10
symbol command 32
symbol ID, obtaining 8
Symbol Namespaces 39
Symbol Properties 33

T
target property 44
The Vector Transformation 14
TOTALVIEW_TCLLIB_PATH

command 2
TOTALVIEW_TCLLIB_PATH

variable 13
Transformation, The Vector 14
transformations, array 3
Transformations, Instantiating 3
transformations, list 3
transformations, map 3
Transformations, Non-vector 13
transformations, struct 3
Transformations, Using Type 2
Transformations, Why Type 1
ttf_check_location 23
ttf_debug_puts 23
ttf_extract_offset 24
ttf_get_base_class_id 24
ttf_get_base_class_location 25
ttf_get_containing_image_id 25
ttf_get_single_symbol_-

from_scope 26

Y

Creating Type Transformations 53

ttf_get_single_symbol_id_from_-
scope 26

ttf_get_symbol_external_name
27

ttf_is_symbol_of_kind 27
ttf_read_store 27
ttf_resolve_final_type_index 27
ttf_resolve_target_type 28
TV::scope command 30
TV::symbol command 32
TV::ttf variable 3
TV::type command 43
TV::type_transformation com-

mand 46
TV:;type_transformation com-

mand 3
type command 43
type property 44
type transformations, activating

2
Type Transformations, Using 2
Type Transformations, Why 1
type_callback 5, 49
type_index 33
type_transformation command 3,

46
type_transformation_description

property 5, 49
type_values property 44

U
Unique to Array Callbacks 5
Unique to List Callbacks 5
upper_bounds_callback 5, 49
Used by All 4
Using Addressing Expressions 6
Using Type Transformations 2

V
validate_callback 5, 7, 49
value operator 10
vector analysis 15
vector extent 20
vector size computation 20
Vector Transformation figure 2
vector transformation overview

3
Vector Transformation, The 14
vector_addressing 21
vector_extent 19
vector_lower_bounds 19
vector_type 18
vector_validate 14

W
walk subcommand 30
Why Type Transformations 1

X
xor operator 10

Y
Your Data, Exploring 8

	Contents
	TTF Overview
	Why Type Transformations
	Using Type Transformations
	Instantiating Transformations
	Quick Definitions of Callbacks and Properties

	Using Addressing Expressions
	Exploring Your Data
	Creating Addressing Expressions

	Creating Vector Transformations
	Non-vector Transformations
	The Vector Transformation
	vector_validate
	vector_type
	vector_lower_ bounds
	vector_extent
	vector_ addressing
	Final Steps

	Convenience routines
	dump_type_ transformation
	ttf_check_location
	ttf_check_ symbol_compiler
	ttf_debug_puts
	ttf_extract_offset
	ttf_get_base_ class_id
	ttf_get_base_ class_location
	ttf_get_ containing_ image_id
	ttf_get_single_ symbol_ from_scope
	ttf_get_single_ symbol_id_from_ scope
	ttf_get_symbol_ external_name
	ttf_is_symbol_ of_kind
	ttf_read_store
	ttf_resolve_ final_type_index
	ttf_resolve_ target_type

	TTF CLI Commands
	scope
	symbol
	type
	type_transformation

